Freyd’s Generating Hypothesis for Groups with Periodic Cohomology

نویسنده

  • SUNIL K. CHEBOLU
چکیده

Let G be a finite group and let k be a field whose characteristic p divides the order of G. Freyd’s generating hypothesis for the stable module category of G is the statement that a map between finite-dimensional kG-modules in the thick subcategory generated by k factors through a projective if the induced map on Tate cohomology is trivial. We show that if G has periodic cohomology then the generating hypothesis holds if and only if the Sylow p-subgroup of G is C2 or C3. We also give some other conditions that are equivalent to the GH for groups with periodic cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Freyd’s Generating Hypothesis with Almost Split Sequences

Freyd’s generating hypothesis for the stable module category of a nontrivial finite group G is the statement that a map between finitely generated kGmodules that belongs to the thick subcategory generated by k factors through a projective if the induced map on Tate cohomology is trivial. In this paper we show that Freyd’s generating hypothesis fails for kG when the Sylow p-subgroup of G has ord...

متن کامل

FREYD’S GENERATING HYPOTHESIS FOR THE STABLE MODULE CATEGORY OF A p-GROUP

Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial p-group G if and only if G is either Z/2 or Z/3. We also give various conditions which ar...

متن کامل

THE GENERATING HYPOTHESIS FOR THE STABLE MODULE CATEGORY OF A p-GROUP

Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial finite p-group G if and only if G is either C2 or C3. We also give various conditions whi...

متن کامل

On Freyd’s Generating Hypothesis

We revisit Freyd’s generating hypothesis in stable homotopy theory. We derive new equivalent forms of the generating hypothesis and some new consequences of it. A surprising one is that I, the Brown-Comenetz dual of the sphere and the source of many counterexamples in stable homotopy, is the cofiber of a self map of a wedge of spheres. We also show that a consequence of the generating hypothesi...

متن کامل

Dynamical Zeta Functions and Transfer Operators, Volume 49, Number 8

C ertain generating functions—encoding properties of objects like prime numbers, periodic orbits, ...—have received the name of zeta functions. They are useful in studying the statistical properties of the objects in question. Zeta functions have generally been associated with problems of arithmetic or algebra and tend to have common features: meromorphy, Euler product formula, functional equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007